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The Measurement of Conductivity and Permittivity
of Semiconductor Sphetes by an Extension

of the Cavity Perturbation Method

K. S. CHAMPLINY, mEMBER, 1RE, AND R. R. KRONGARD}

Summary-—A technique based on cavity perturbation theory is
described with which one can determine the microwave conduc-
tivity and dielectric permittivity of a small sphere of completely
arbitrary conductivity. These properties follow from the measured
frequency shift and quality change occurring when the sample is
inserted into a region of maximum electric field in a cavity resonator.
The range of validity of the quasi-static internal field approximation
is discussed, and curves are provided for extending the measuring
technique beyond this range. The extended theory is valid for the
entire conductivity range from zero to infinity. Measurements on
several samples of known conductivity and permittivity in which the
approximation is not satisfied are seen to agree with the theory. For
highly conductive materials, the present method is closely related
to the ‘‘eddy current loss” measuring technique discussed by
others. The two methods are compared from the point of view of
perturbation theory in order to determine their relative merits. Be-
cause the measuring technique employs a spherical sample, it may
be applied profitably to materials with nonisotropic carrier mobilities
and to semiconducting materials for which contact fabrication tech-
niques are poorly known.

INTRODUCTION

"N AVITY perturbation techniques have frequently
been used to measure the complex magnetic and
=" electric susceptibilities of many magnetic [1] and
dielectric [2] materials. These measurements are per-
formed by inserting a small appropriately shaped
sample into a cavity resonator and determining the
properties of the sample from the resultant change in
quality and resonant frequency.
Such techniques have found very little use in research
on materials with conductivities in the range of semi-
conductors. Several probable reasons are:

1) The assumption often made in perturbation cal-
culations—that the fields are uniform throughout
the sample—is usually not satisfied with semi-
conductors of practical size.

2) The conduction and displacement currents of
semiconductors are often of the same order of
magnitude at microwave frequencies. The simpli-
fying assumptions which apply to either low-loss
or high-loss materials are therefore not valid.

3) It is sometimes believed that the approximations
inherent in perturbation methods preclude their
use with materials of arbitrary conductivity.
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The present paper treats the problem of determining
the microwave conductivity and permittivity of a small
sphere (~1 mm radius for x-band measurements, as
shown in Fig. 1) of completely arbitrary conductivity.
These properties follow from the measured frequency
shift and quality change occurring when the sample is
inserted into a region of maximum electric field in a
cavity resonator. The method is quite general and re-
quires no a priori knowledge concerning the conduc-
tivity range of the sample. For materials of arbitrary
conductivity, both the frequency shift and quality
change are required to determine uniquely either the
conductivity or the permittivity. Furthermore, the uni-
form internal field approximation often made in per-
turbation calculations is found to limit measurement to
materials of low conductivity. A computor solution of
the field equations removes this restriction, thus extend-
ing the measuring technique to high conductivity ma-
terials.

The measuring technique should apply to the syste-
matic study of new semiconducting materials such as
the organic semiconductors. For these materials, many
of which have extremely nonisotropic carrier mobilities,

Fig. 1-—Spherical samples of Si and Ge with radii of 1.0 mm and
0.4 mm, respectively. A common pin is included for size comparison.
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the techniques of fabricating good “ohmic” contacts are
totally unknown. In addition to the obvious advantage
of eliminating contacts, the microwave technique has
the further advantage of permitting measurement along
various crystallographic directions by merely rotating
the specimen.

I. THEORY
A. The Perturbation Formula

Consider a single oscillatory mode of a cavity reso-
nator. If a perturbing specimen, small compared with
the spatial variation of the unperturbed fields, is intro-
duced into the cavity, the complex natural decay fre-
quency changes by an amount [3]-[8]'

50 P-E + M-Hy* 0
= -,
& 4

where a complex quantity is denoted by a circumflex
above it. In (1), Eo and H, are the unperturbed fields at
the location of the specimen, P and M are the speci-
men’s total induced electric and magnetic moments ob-
served externally, and W is the energy stored in the
cavity. Although (1) applies to the transient case,
measurements are generally obtained from the sinus-
oidal steady state. For the high-Q wvalues of interest,
these viewpoints are related by

& = wo + 7(wo/20), (2)

in which w, is the resonant frequency for forced oscilla-
tions.

Placing the sample at an electric field maximum re-
sults in H, =0, while the stored energy follows from the
relation (mks units)

= (1/2)e0f | E|%dv (3)

cavity

where E is the unperturbed vector field distribution for
the given mode. There remains only to determine P.

Casimir has solved for the magnetic moment of a fer-
romagnetic sphere in an initially uniform high-fre-
quency magnetic field [9]. Because of the dual nature
of Maxwell’s equations, his solution applies also to the
electric moment of a semiconducting sphere in a high-
frequency electric field. The result, for a sphere of
radius R and complex relative permittivity & is (see
Appendix)

13=3e {ﬁ(”f/—R)—-—_l} <i WR)E‘% (4)
&0(9R) + 2

1 The integral form of the perturbation formula is derived in
references [3]-[7]. For small samples, (1) and the more generalintegral
form are equivalent.
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in which 4 is the propagation constant for plane waves

in the material, and 4(¥R) is given by

{ ($R) cosh ($R) —sinh (¥R) } )
(R) cosh (§R)— {1+ ($R)?} sinh (§R)S

3(7R) = —

The imaginary part of the complex permittivity &,
results from both dielectric and conductive losses. For
semiconductors in which conductive losses predomi-
nate,

»
& =

€ — jo'r (6)

is a convenient convention, where the relative conduc-
tivity o, is equal to o/weo if dielectric losses can be
neglected. The utility of this notation results from o,
then being simply proportional to the conductivity in
mks units, e.g., o,=(0.53)¢ at 9.6 kMec.

Because of the form of (4), we define the effective com-
plex permittivity of the sphere by

Er(eth) = érﬁ(')A’R)
= €p(cff) —jo-r(eff)- (7)

Methods for converting from effective to actual values
will be given in Section I-D. Combining (1), (3), (4)

and (7) leads to
&ty — 1
sl @

o Gy )[
B o & oty + 2

N
&

where 7; and v, are the volume of the sample and of the
cavity, respectively, and (. is the cavity constant,

1
Co = —
Ve cavity

a quantity readily evaluated for a given mode; e.g.,
C:.=1 for a rectangular cavity oscillating in the TEy,,
mode.

o, )

'max

B. Inversion of the Perturbation Formula

Assuming that the Q of the perturbed resonator is
fairly high, (8) may be written

{ - ii} +J{~ a(l/z@f

3

= ’

{Er(eff) + 2} —j{dr(em}

(10)

where
K = 3/2)(1/Cc)(vs/vc). 11)
Eq. (10) is of the form of the complex transformation

Z = 3/%*, (12)

where Z=X+4;V relates to the experimental param-
eters and @w=u-+jv to the physical properties of the
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sphere. Separating (10) into real and imaginary parts
vields

fig b Eﬁ} T s At
l K o Vercerny + 242 4 {O'r(eff)}Z

1 3{Ur(cf1)}

—8(1/2 )} = — - (14
{K /20 Yercerny + 2}2 + {oreeen}? (

The inverse transformation is, of course, of the same
form. Thus

Verern + 2f = ——— -

1ot (1
{1+ =2y a<1/2<2>}

S (15)

! 1
3 {Z 6(1/2Q)f

. 156002—{—{1617)2
{ +K wu} K (/NQ)}

Egs. (15) and (16) separately yield ¢ (eff) and o, (eff)
from the measured changes in wy and Q.
Fig. 2 shows the relative frequency shift and quality

- (16)

{Ur(eff)} =

]

|

54—
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Fiy. 2-—Relative frequency shift and quality change as function of
effective relative permittivity and conductivity of small semi-
conducting sphere. Sphere is placed at location of maximum elec-
tric field.
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change for several values of e(eff) and o.(eff). For
small ¢,(eff), the frequency change depends only on
e.(eff), and 6(1/Q) varies directly as o,(eff). Spencer,
et al., have measured the complex permittivity of small
ferrite spheres with effective conductivities in this
range [1]. At the other end of the o,(eff) scale, 6wo/w, ap-
proaches a constant independent of e.(eff), while an in-
verse relationship exists between 8§(1/Q) and a,(eff).
One sees that in general, both experimental parameters
are required to determine esther e.(efl) or o,(eff).

C. The Quasi-Static Field Approximation

Frequently, as in [1], one assumes that l '?R' is small
compared with unity. The field distribution then fol-
lows from the static solution by merely extending ¢, to
complex values. For a semiconducting sphere in an ini-
tially uniform time-varying field, the quasi-static field
within the sphere is again uniform; and the sphere ac-
quires an electric moment given by (4) with §(yR) =1.
Thus, for the quasi-static case,

€r(effy ™ €ry

(17)

Tr(efty = Ops

The terms neglected in (4) by this approximation are
those in (¥R)? and higher orders.

The range of validity of the quasi-static approxima-
tion at 9.6 kMc can be determined from I'ig. 3. If one
limits |§/R| to values less than, say, %, a germanium
sphere of 3-mm radius restricts measurement to resis-
tivities greater than about 10 ohm-cm (¢,220). Reduc-
ing the radius extends the range of validity. One can
see, however, that practical considerations will prevent
utilizing the quasi-static approximation with very low
resistivity materials. For radii larger than about  mm,
the approximation is never valid regardless of the re-
sistivity because of the large dielectric constant.

20 L
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Fig. 3—Magnitude of inverse propagation constant as a function
of conductivity for silicon and germanium. f=9.6 kMc. For con-
venience, resistivity scale is also shown.
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D. The Exact Solution-—Conversion from Effective to
Actual Values

For materials with magnetic permeabilities equal to
unity, one can write

(FR) = jor(uoeo) V2 (&, R}/, (18)

Since, at a given frequency, (¥R) is a function of the
single complex variable (&.R?), (5) leads to the following
complex relationship between (&R?) and (& R?:

{%,.(eff)Rg} = — 2{€TR2}

|: (#R) cosh (#R) — sinh (¥R) ] (19)
($R) cosh (R) — {1 + ($R)?} sinh (§R) I’

Eq. (19) has been evaluated for a frequency of 9.6 kMc
with a high-speed digital computer. The results of these
computations are shown in Figs. 4-6.

Figs. 4 and 5 show @26ty and a?a,.1r) as functions of
a%, and a%,, where ¢ is the sphere radius in mzllimeters.
At certain values, a type of dimensional resonance re-
sults in €.ty changing sign. The positive range of €qess
is shown in Fig. 4 and the negative range in Fig. 5. One
sees from Fig. 5 that the results become less dependent
on € as ¢, increases. For .0, (p<1 ohm em for Ge
and Si) a unique relationship exists between a%¢, s
and a%,, which is independent of .. This relationship is
shown in Fig. 6.

Although the curves of Figs. 4-6 were derived for
f=9.6 kMc and p,=1, one can easily extend their use
to other frequencies and (real) permeabilities by intro-
ducing the “corrected” radius ¢’ defined by

f(kmc)
a = u ' ——a. 20
9.6 (20)

The plots in Figs. 4-6 are useful for estimating the
accuracy of the quasi-static approximation as well as
for converting from effective to actual values. As an
example of the former, consider the solid curve a%,=4
in Fig. 4 which applies to the 3-mm germanjum sphere
discussed in the previous section. At low conductivities,
Grotny/-=1.03. As conductivity increases, the ratio de-
creases but is still about 0.925 for %, =80 (Fig. 5). One
concludes that with a f-mm germanium sphere, the
quasi-static approximation introduces less than 8 per
cent error in the measured conductivity for o,<320
(050.6 ohm-cm). Thus, as far as conductivity measure-
ments are concerned, the quasi-static approximation is
much less restrictive than one might assume from Fig.
3. For ¢,> 320, it becomes necessary to correct the ef-
fective conductivity. In this range, however, ¢.<Xg, so
that Fig. 6 applies.

When the conductivity is large enough that <o,
and 500 <a%s, are simultaneously satisfied, the asymp-
totic approximation to the curve in Fig. 6 vields

(ller(eff) = - dzer(gff) = {5\/2} {a2m} 1/2,

(21)

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

100

50

20

a® &rtety — RELATIVE UNITS
0

0S5

02

a? o, ~ RELATIVE UNITS

Fig. 4—Relationship between effective and actual values of relative
permittivity and conductivity for sphere of radius a (millimeters)
F=9.6 kMc, u, =1, ¢ (eff) >0.
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while (13) and (14) become

frrono} -~ e 2

wo

()
2 Or(eff)

2

(22)

Combiring, one has

o = (0.045) (23)

'
{E 5(1/2@}

Thus, for very high-conductivity materials, o, can be
determined analytically from measurements of quality
change alone.

E. The “Eddy Current Loss” Method

The conductivity of highly-conductive spheres can
also be measured by the “eddy current loss” method.
With this method, one determines the conductivity
from the change in Q which results from inserting the
sample into a region of maximum magnetic field in a
cavity resonator.

The eddy current loss method was first discussed by
Linhart, et al., who analytically determined the con-
ductivity of a sphere that was large compared with the
skin depth [10]. The size restriction was later removed
by Kohane and Servitz with a graphical evaluation pro-
cedure [11]. Both papers contain the tacit assumption
which led to Fig. 6; 4.e., €.<o.(pZ1 ohm-cm for Si and
Ge). Further, the method of Linhart, ¢ al., applies to
the region 500 <a%s,, for which the asymptotic approxi-
mation in Fig. 6 and (23) are justified.

For comparison with the “standard” method, it is
informative to discuss the eddy current loss method
from the standpoint of perturbation theory. According
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to Casimir [9], a sphere of relative permeability g, in
a high-frequency magnetic field acquires a magnetic

moment
N LIFR) — 1 + ~
M = 3#0 [L“} —TRg} Ho,
pIER) + 2113

in complete analogy with (4). Again, #(¥R) is defined
by (5). Since electric and magnetic flelds enter (1) in
exactly the same way, the work in Sections [-A and
I-B can be extended to the present case by merely rede-
fining the cavity constant in terms of magnetic fields
and replacing & p with {#9(4R)}. For nonmagnetic
materials (2,221), as considered in references [10] and
[11], one then has the following:

(24)

1) The real part of #(9R) replaces €.(ess),
2) The imaginary part of 3($R) replaces —o,(sn).

Performing these substitutions in (14) and evaluating
for €,<<o, leads to the transcendental equation which
has been plotted by Kohane and Servitz [11].

For large |'§/R[, #(¥R) approaches 2/(§R). The
transcendental expression then becomes

1
{E aa/z@}

3 1 1
T 2V2 o(uee) 2R o2

(25)

in agreement with Linhart, et al. [10]. For the same
approximation, the standard method leads to [see (23)]

{—1— 512000 = 2 () PR—— - (26)
K f.

242 gt
Thus, at 9.6 kMc the observed quality change by the
two methods has the ratio

{0} '

o)

where a is the sphere radius in millimeters.

The following comparisons can now be made:

1) The standard method has several advantages over
the eddy current loss method if the conductivity is not
too large. The standard method is useful over a very
wide conductivity range; it may be used with materials
with u,#1; and unlike the eddy current loss method, it
gives a single valued result.

2) On the other hand, the eddy current loss method
is probably preferable for conductivity measurements
in the range 500 <a’,, because there is a larger quality
change for a given o, than with the standard method if
the radius is less than 5 mm (as the original assumptions
require). The eddy current loss method should thus
vield greater accuracy in this conductivity range.

(27)
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TABLE I
Tvprical. MEASUREMENTS

Q;gg mam fi{: rr?{s Percefo @orcetn @ @or & Q clr)n
Sample 1
n-type Si 250 0.945 1.94 10.39 11.12 0.743 10.4 0.683 11.6 248
Sample 2
p-type Si 135 1.026 4,03 13.30 12.91 1.58 12.3 1.47 11.6 136
Sample 3
n-type Ge 37 1.55 9.13 20.49 22.12 8.32 21.12 6.90 15.9 36.3
Sample 4~
n-type Ge 10 0.982 9.81 13.96 13.47 21.78 15.0+1 19.8 15.6+1 9.8
Sample 5
n-type Si 3 1.033 7.27 17.39 —1.43 67.22 15+3 65.0 15+35 3.1

II. EXPERIMENTAL RESULTS

Measurements of microwave conductivity and per-
mittivity have been performed on a number of single-
crystal germanium and silicon specimens. An under-
coupled, rectangular transmission cavity, oscillating in
the TEs; mode, was used in these studies. The sample
was placed on a slight indentation in the center of a
thin mylar film stretching horizontally across the mid-
dle of the cavity. The film supported the sample at the
cavity's geometric center, yet left the empty cavity
field relatively undisturbed. Opening and closing the
cavity during measurement was avoided by inserting
the sample through a small hole at a region of minimum
wall current. The empty cavity had a resonant fre-
quency of 9.482 kMec, a loaded Q of 7650, and a volume
of 15.18 cm[3].

The response curve of the cavity was displayed on an
oscilloscope by frequency modulating the klystron
source. A marker pulse indicating the absorption fre-
quency of a cavity wavemeter was superimposed on this
resonance curve and used for measuring frequency dif-
ferences. The change in quality caused by the sample
was determined from the change in transmitted power
as measured with a precision attenuator by using the
following relation [12]:

o ) 1]

where Qy is the loaded Q of the empty cavity.

Typical results are shown in Table I. Even for the
samples with large resistivity, the quasi-static approxi-
mation is not justified in these measurements since
HRI is of the order of unity (see Fig. 3). The approxi-
mation gets worse as resistivity decreases. Indeed, for
sample 5, the effective permittivity is actually negative.
Although permittivity measurements are rather in-
accurate in this range, the corrected value is of the right
order of magnitude. The agreement between values of
resistivity measured by dc and by microwave means is
seen to be excellent.

(28)

IT1I. CoNCLUSIONS

The preceding discussion has developed the relation-
ships between the electrical properties of a small sphere
of completely arbitrary conductivity and the frequency
shift and quality change resulting from its insertion into
a cavity resonator. For experiments in which the quasi-
static field approximation is justified, the inversion for-
mulas (15) and (16) yield the conductivity and permit-
tivity of the sphere in terms of the experimental param-
eters. For the general case, however, (15) and (16) vield
only “effective” values which are then converted to the
“actual” conductivity and permittivity with the aid of
Figs. 4-6. Measurements on materials not satisfving
the quasi-static approximation show good agreement
with the theory.

The above method may possibly be applicable to the
observation of such semiconductor phenomena as the
photoconductive effect, the magnetoresistive effect, and
the “hot” electron effect, as well as to the simpler meas-
urement of static conductivity. Since “ohmic” con-
tacts are not used, these measurements can be made on
materials for which contact fabrication techniques are
not well understood. Furthermore, the spherical geom-
etry should allow one to perform separate electrical
measurements along the various crystal axes of non-
isotropic solids by merely rotating a single specimen.

APPENDIX

Tae Erectric MOMENT OF A SEMICONDUCTING
SPHERE IN A TiME-VARYING ELECTRIC FIELD

Consider a sphere of radius R in a time-varying elec-
tric field. Assume that the sphere is sufficiently small
so that the external field in its neighborhood is quasi-
static, reducing to a uniform field in the Z direction E,,
at large distances. Since the magnitudes of the constitu-
tive parameters are to be unrestricted, no such assump-
tion will apply to the internal field. This problem, whose
magnetic analogue has been discussed by Casimir [9],
is thus a step beyond the quasi-static treatment.

In view of the solenoidal character of the complex dis-
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placement vector, it can be derived from a vector po-
tential A whose divergence is zero. Thus

HnE=vV X Al

and | (29)
V-A=0 J
where
€0 for R <7
&(r) = (30)
€0ty for r < R.
The vector potential satisfies
VZA=0 forR<r (31)
V2A—42A=0 for r <R (32)

with
,? — 'w{ 2 l1i/2
Jo Ho€oery =7,
and the boundary conditions that A and the tangential
component of E are continuous at the surface of the
sphere.
Just as in the quasi-static treatment, the external field
is the superposition of the uniform field E., and that of
a dipole in the z direction with moment P,.

Ay = — (U DeFuy — i
e
(33)
Ay = + (1/Delror + P.—— | -
dy® )
Inside the sphere, we put formally
A: = — /?('YA”%
Ay =+ J(5r)x. 34
Substituting (34) into (32) leads to
Mt =7i=0 (35)
(97)
which has the solution
. (97) cosh (§7) — sinh (97)
J('W’) =a . N y
($7)?
= ap(fr) (36)

where ¢ is a constant to be determined from boundary
conditions.
From the continuity of A at the surface one has

-

z

= (1/2)eof2 .0,

= (37)

ap(YR) —
(1R) .
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and from the continuity of the tangential component
of E,

L {28(9R) + GRFGR)] + — = ofar. (38)

¢ 4rR3

Solving (37) and (38) for 2, yields the desired result,

) G9GR) — 1) /4 .
B, — 3¢ {W——ﬁ} <_ m) Bay (39
20(R) + 2 \3
where
GR) = A (40)
22(9R) + AR (3R)
$(4R)

_ 2j (¥R) cosh ($R) — sinh (?R) } . (4n)
L(#R) cosh ($R) — {1 4 (yR)?} sinh (¥R)
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