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The Measurement of Conductivity and Permittivity

of Semiconductor Spheres by an Extension

of the Cavity Perturbation Method*

K. S. CHAMPLIN~, MEMBER,

Summary-A technique based on cavity perturbation theory is

described with which one can determine the microwave conduc-

tivity anc[ dielectric permittivity of a small sphere of completely

arbitrary conductivity. These properties follow from the measured
frequency shift and quality change occurring when the sample is

inserted into a region of maximum electric field in a cavity resonator.

The range of validity of the quasi-static internal field a~pproximation

is discussed, and curves are provided for extending the measuring
technique beyond this range. The extended theory is valid for the
entire conductivity range from zero to infinity. Measurements on
several snmples of known conductivity and permittivity in which the

approximation is not satisfied are seen to agree with the theory. For
hlgl-dy conductive materials, the present method is closely related

to the ‘(eddy current loss” measuring technique dkcussed by

others. The two methods are compared from the point of view of
perturbation theory in order to determine their relative merits. Be-

cause the measuring technique employs a spherical sample, it may

be applied profitably to materials with nonisotropic carrier nobilities
and to semiconducting materials for which contact fabrication tech-
niques are poorly known.

INTRODUCTION

~ AVITY perturbation techniques have frequently

L
been used to measure the complex magnetic and

..
electric susceptibilities of many magnetic [1] and

dielectric [2] materials. These measurements are per-

formed by inserting a small appropriately shaped

sample into a cavity resonator and determining the

properties of the sample from the resultant change in

quality and resonant frequency.

Such techniques have found very little use in research

on materials with conductivities in the range of semi-

conductors. Several probable reasons are:

1)

2)

3)

The assumption often made in perturbation cal-

culations-that the fields are uniform throughout

the sample—is usually not satisfied with semi-

conductors of practical size.

The conduction and displacement currents of

semiconductors are often of the same order of

magnitude at microwave frequencies. The simpli-

fying assumptions which apply to either low-loss

or high-loss materials are therefore not valid.

I-: is sometimes believed that the approximations

iuherent in perturbation methods preclude their

use with materials of arbitrary conductivity.
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The present paper treats the problem of determining

the microwave conductivity and perrnittivity of a small

sphere (-l mm radius for x-band measurements, as

shown in Fig. 1) of completely arbitrary conductivity.

These properties follow from the measured frequency

shift and quality change occurring when the sample is

inserted into a region of maximum electric field in a

cavity resonator. The method is quite general ancl re-

quires no a pyio~i knowledge concerning tlhe conduc-

tivity range of the sample. For materials of arbitrary

conductivity, both the frequency shift and quality

change are required to determine uniquely either the

conductivity or the permittivity. Furthermore, the uni-

form internal field approximation often made in per-

turbation calculations is found to limit measurement to

materials of low conductivity. A computor solution of

the field equations removes this restriction, thus extend-

ing the measuring technique to high conductivity ma-

terials.

The measuring technique should apply to the syste-

matic study of new semiconducting materials such as

the organic semiconductors. For these materials, many

of which have extremely nonisotropic carrier nobilities,

Fig. l-–Spherical samples of Si and Ge with radii of 1.0 mrn and
0.4 mm, respectively. A comlmon pin is included for size comparison.
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the techniques of fabricating good ‘(ohmic” contacts are

totally unknown. In addition to the obvious advantage

of eliminating contacts, the microwave technique has

the further advantage of permitting measurement along

various crystallographic directions by merely rotating

the specimen.

1. THEORY

A. The Perturbation Formula

Consider a single oscillatory mode of a cavity reso-

nator. If a perturbing specimen, small compared with

the spatial variation of the unperturbed fields, is intro-

duced into the cavity, the complex natural decay fre-

quency changes by an amount [3 ]– [8 ]’

Ml p.&* + &.&o*
— — —

6 4W ‘
(1)

where a complex quantity is denoted by a circumflex

above it. In (1), 20 and BO are the unperturbed fields at

the location of the specimen, ~ and M are the speci-

men’s total induced electric and magnetic moments ob-

served externally, and W is the energy stored in the

cavity. Although (1) applies to the transient case,

measurements are generally obtained from the sinus-

oidal steady state. For the high-Q values of interest,

these viewpoints are related by

in which W. is the resonant frequency for forced oscilla-

tions.

Placing the sample at an electric field maximum re-

sults in fio = O, while the stored energy follows from the

relation (inks units)

where E is the unperturbed vector field distribution for

the given mode. There remains only to determine P.

Casimir has solved for the magnetic moment of a fer-

romagnetic sphere in an initially uniform high-fre-

quency magnetic field [9]. Because of the dual nature

of Maxwell’s equations, his solution applies also to the

electric moment of a serniconducting sphere in a high-

frequency electric field. The result, for a sphere of

radius R and complex relative permittivity ?, is (see

Appendix)

I The integral form of the perturbation formula is derived in
references [3]–[7]. For small samples, (1) and the more general integral
form are equivalent,

in which ~ is the propagation constant for plane waves

in the material, and fl(~R) is given by

{

(~R) cosh (~R) – sinh (~R)
O(~R) = — 2

}(-flZ) cosh (~R) – { 1+ (~R)2} sinh (~R) “
(5)

The imaginary part of the complex permittivity t,

results from both dielectric and conductive losses. For

semiconductors in which conductive losses predomi-

nate,

2, = e, – jffr (6)

is a convenient convention, where the ~elative conduc-

tivity u, is equal to cr/cMo if dielectric losses can be

neglected. The utility of this notation results from a,

then being simply proportional to the conductivity in

mks units, e.g., a,= (0.53)a at 9.6 kMc.

Because of the form of (4), we define the eflective com-

plex permittivity of the sphere by

= ~r(cff) — .7Ur(eff). (7)

Methods for converting from effective to actual values

will be given in Section I-D. Combining (1), (3), (4)

and (7) leads to

where v, and v, are the volume of the sample and of the

cavity, respectively, and C. is the cavity constant,

C,J
s!

FE— ‘dv, (9)
Vc cavity max

a quantity readily evaluated for a given mode; e.g.,

C,= ~ for a rectangular cavity oscillating in the TEIon

mode.

B. Inversion of the Pe~tzwbation Fo?mula

Assuming that the Q of the perturbed resonator is

fairly high, (8) may be written

3

{Weff, + 2} - j{weff)] ‘

(lo)

where

K = (3/2) (l/C,) (V,/VC) . (11)

Eq. (10) is of the form of the complex transformation

2 = 3/?3*, (12)

where ~ = X +j Y relates to the experimental param-

eters and ti = u +jv to the physical properties of the
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sphere. !~eparating (10) into real and imaginary parts

yields

The inverse transformation is, of course, of the same

form. Thus

Eqs. (15) and (16) separately yield G (eff) and a,(eff)

from the measured changes in COOand Q.

Fig. ;! shows the relative frequency shift and quality

II
-07 -08 -09 -10

l/K ( b 00/~0) - FREQ[JENCY CHANGE - RELATl\/E UNITS

Fig. 2–-Relative frequent>: shift and quality change as function of
effecl.i>-e relative permltti~-ity and conductivity of small semi-
conducting sphere. Sphere is placed at location of maximum elec-
tric field.

change for several values of ~,(eff) and a,(eff). For

small a,(eff), the frequency change depends only on

e,(eff), and 8(1/Q) varies directly as a,(eff). Spencer,

et al., have measured the complex permittivity of small

ferrite spheres with effective conductivities in this

range [1]. At the other end of the a,(eff) scale, &-oo/coo ap-

proaches a constant independent of e,(eff), w bile an in-

verse relationship exists between cI(l /Q) and cr.(eff).

One sees that in general, both experimental parameters

are required to determine either e,(eff) or u, (eff).

C. The Quasi-Static Field .4 f@roximation

Frequently, as in [1], one assumes that I fR\ is small

compared with unity. The field distribution then fol-

lows from the static solution by merely extending q to

complex values. For a serniconducting sphere in an ini-

tially uniform time-varying field, the quasi-static field

within the sphere is again uniform; and the sphere ac-

quires an electric moment given by (4) with O($R) =1.

“rhus, for the quasi-static case,

~r(cff) = ~r. (17)

The terms neglected in (4) by this approximation are

those in (?R)2 and higher orders.

The range of validity of the quasi-static approxima-

tion at 9.6 kMc can be determined from Fig. 3. If one

limits I ~R I to values less than, say, ~, a !germanium

sphere of +mrn radius restricts measurement to resis-

tivities greater than about 10 ohm-cm (fT,~2!O). Reduc-

ing the radius extends the range of validity. One can

see, however, that practical considerations will prevent

utilizing the quasi-static approximation with very low

resistivity materials. For radii larger than about ~ mm,

the approximation is never valid regardless of the re-

sistivit y because of the large dielectric constant.

0
&
w
t-

+
i
+
2
1

<

T—

20 40 60 10 20 40 60 100 200 400 600

CONDUCTIVITY - ~r - RELATIVE UNITS

+—------t
,00 40 20 10 40 20 !0 04

RESISTIVITY - ? - OHM CENTIMETER

Fig. 3-–Magnitude of inverse propagation constant as a function
of conductivity for silicon and germaniunl. j= 9.6 kMc. For con-
venieu[-e, resistivity scale is also shown.
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D. The Exact Solution-Conversion from Efective to

A ctl~al Jralues

For materials with magnetic permeabilities equal to

unity, one can write

(7R) = @(Po@) ‘/’(?rR’) ‘/’. (18)

Since, at a given frequency, (~R) is a function of the

single complex variable (?,R2), (5) leads to the following

complex relationship between (?,R2) and (?,(,@2) :

{%ff,~’} = - 2{&.R’}

“[

(~R) cosh ($R) – sinh (~R)

1(~R) cosh (~R) – ~ 1 + (~R)’} sinh (~R) “
(19)

Eq. (19) has been evaluated for a frequency of 9.6 kMc

~,ith a high-speed digital cotnputer. The results of these

computations are shown in Figs. 4–6.

Figs. 4 and 5 show aze,(~ff) and azu,(,f~) as functions of

a%, and a%,, where a is the sphere radius in millimeters.

At certain values, a type of dimensional resonance re-

sults in c,(eff) changing sign. The positive range of e,(eff)

is shown in Fig. 4 and the negative range in Fig. 5. One

sees from Fig. 5 that the results become less dependent

on e,. as u, increases. For c,<<c,, (p ~ 1 ohm cm for Ge

and Si) a unique relationship exists between a2cr,(eff)

and a%,, which is independent of e,. This relationship is

shown in Fig. 6.

Although the curves of Figs. 4–6 were derived for

~= 9.6 ~Mc and p,= 1, one can easily extend their use

to other frequencies and (real) permeabilities by intro-

ducing the “corrected” radius a’ defined by

a’= ,ur112ka.
9.6

(20)

The plots in Figs. 4–6 are useful for estimating the

accuracy of the quasi-static approximation as well as

for converting from effective to actual values. As an

example of the former, consider the solid curve a% = 4

in Fig. 4 which applies to the +mrn germanium sphere

discussed in the previous section. At Io;v conductivities,

a,(,ff)/ur = 1.03. As conductivity increases, the ratio de-

creases but is still about 0.925 for a%, = 80 (Fig. 5). One

concludes that with a +mm germanium sphere, the

quasi-static approximation introduces less than 8 per

cent error in the measured conductivity- for a, <320

(p70.6 ohm-cm). Thus, as far as conductivity nleasure-

ments are’ concerned, the quasi-static approximation is

much less restrictive than one might assume from Fig-.

3. For a,> 320, it becomes necessary to correct the ef-

fective conductivity. In this range, however, c,<<a, so

that Fig. 6 applies.

When the conductivity is large enough that c,<<~v

and 500 <a%, are simultaneously satisfied, the as~-nlp-

totic approxilnatiou to the curve in Fig. 6 yields

a2ur(cff) = — a2q.(Cff) = [ 5v’Z} [azu, } Ilz, (21)

—
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while (1 3) and (14) become

31

‘()

— —.

2 Ur(eff)

Combir.ing, one has

(22)

as
., = (0.045) —

{~ N/2 Q)} 2

(23)

Thus, for very high-conductivity materials, o-, can be

de-termi ned anall”tically from measurements of quality

change alone.

E. The ‘(Eddy Cuwent Loss” Method

The conductivity of highly-conductive spheres can

also be measured by the ‘(eddy current loss” method.

With this method, one determines the conductivity

from the change in Q which results from inserting the

sample into a region of maximum magnetic field in a

cavity resonator.

The eddy current loss method was first discussed by

Linhart, et al., who analytically determined the con-

ductivity of a sphere that was large compared with the

skin depth [10 ]. The size restriction was later removed

b>- Kohane and Servitz with a graphical evaluation pro-

cedure [11 ]. Both papers contain the tacit assumption

which led to Fig. 6; i.e., ~,<<a,(p~l ohm-cm for Si and

Ge). Further, the method of Linhart, d al, applies to

the region 500< a’a,, for which the asymptc,tic approxi-

mation in Fig. 6 and (23) are justified.

For comparison with the “standard” method, it is

informative to discuss the eddy current loss method

from the standpoint of perturbation theor}. According

to Casimir [9], a sphere of relative permeability j], in. .
a high-frequency magnetic field acquires a magnetic

moment

in complete analogy- with (4). Again, 8(~R) is defined

by (5) Since electric and magnetic fields enter (1) in

exactl>’ the same way, the work in Sections 1-.4 and

I-B can be extended to the present case by merely rede-

fining the cavity constant ill terms of magnetic fields

and replacing ~, (.rr, with ~i2, fi(4R) ~. For nonmagnetic

materials (p,= 1), as considered in references [10] and

[11 ], one then has the follom-ing:

1) The real part of O(?R) replaces c,[~~fj,

~) The inlagillary par-t of fi(~l?) replaces -u,(,ff).

Performing these substitutions in (14) and evaluating

for c,<<u, leads to the transcendental equation which

has been plotted by Kohane and Servitz [11].

For large I ~R I , $(~R) approaches 2/ (+R). The

transcendental expression then becomes

{;N/2Q)~
e

(25)

in agreement with Linhart, et al. [10]. For the same

approximation, the standard method leads to [see (23)]

Thus, at 9.6 kMc the observed quality change by the

two methods has the ratio

{+’(12Q)L ,2

{+2Q)}S = ‘T)‘
(27)

where a is the sphere radius in millimeters.

The following comparisons can now be made:

1) The standard method has several advantages over

the eddy current loss method if the conductivity is not

too large. The standard method is useful over a very

wide conductivity range; it may be used with materials

with p,# 1; and unlike the eddy current loss method, it

gives a single valued result.

~) 011 the other hand, the eddy current loss method

is probably preferable for conductivity measurements

in the range 500< a2a,, because there is a larger quality

change for a given a, than with the standard method if

the radius is less than 5 mm (as the original assumptions

require). The eddy current loss method should thus

yield greater accuracy in this conductivity range.
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TABLE I

TYPICAL lblEASUREME~TS

Pdc a 8P af
~ cm mm db U%(. if)

mcs
a%r(eff) aze, azu, G n c%

Sample 1
n-type Si 250 0.945 1.94 10.39 11.12 0.743 10.4 0.683 11.6 248

Sample 2
p-type Si 135 1.026 4.03 13.30 12,91 1.58 12.3 1,47 11.6 136

Sample 3
n-type Ge 37 1.55 9.13 20,49 22.12 8,32 21.12 6.90 15.9 36.3

Sample 4
n-type Ge 10 0.982 9.81 13.96 13.47 2~,78 15.0*1 19,8 15.6tl 9.8

Sample 5
n-type Si 3 1,033 7.27 17.39 –1,43 67.22 15i5 65.0 15*5 3.1

II. EXPERIMENTAL RESULTS

Measurements of microwave conductivity and per-

mittivity have been performed on a number of single-

crystal germanium and silicon specimens. An under-

coupled, rectangular transmission cavity, oscillating in

the TE1OS mode, was used in these studies. The sample

was placed on a slight indentation in the center of a

thin mylar film stretching horizontally across the mid-

dle of the cavity. The film supported the sample at the

cavity’s geometric center, yet left the empty cavity

field relatively undisturbed. Opening and closing the

cavity during measurement was avoided by inserting

the sample through a small hole at a region of minimum

wall current. The empty cavity had a resonant fre-

quency of 9.482 kMc, a loaded Q of 7650, and a volume

of 15.18 cm [3].

The response curve of the cavity was displayed on an

oscilloscope by frequency modulating the klystron

source. A marker pulse indicating the absorption fre-

quency of a cavity wavemeter was superimposed on this

resonance curve and used for measuring frequency dif-

ferences. The change in quality caused by the sample

was determined from the change in transmitted power

as measured with a precision attenuator by using the

following relation [12 ] :

“1’2Q’=+K)l’2- ‘1
(28)

where Q. is the loaded Q of the empty cavity.

Typical results are shown in Table I. Even for the

samples with large resistivity, the quasi-static approxi-

mation is not justified in these measurements since

I ?Rl is of the order of unity (see Fig. 3). The approxi.

mation gets worse as resistivity decreases. Indeed, for

sample 5, the effective permittivity is actually negative.

Although permittivity measurements are rather in-

accurate in this range, the corrected value is of the right

order of magnitude. The agreement between values of

resistivity measured by dc and by microwave means is

seen to be excellent.

III. CONCLUSIONS

The preceding discussion has developed the relation-

ships between the electrical properties of a small sphere

of completely arbitrary conductivity and the frequency

shift and quality change resulting from its insertion into

a cavity resonator. For experiments in which the quasi-

static field approximation is justified, the inversion for-

mulas (15) and (16) yield the conductivity and permit-

tivity of the sphere in terms of the experimental parame-

ters. For the general case, however, (15) and (16) yield

only “effective” values which are then converted to the

‘(actual” conductivity and permittivity with the aid of

Figs. 4–6. Measurements on materials not satisfying

the quasi-static approximation show good agreement

with the theory.

The above method may possibly be applicable to the

observation of such semiconductor phenomena as the

photoconductive effect, the magnetoresistive effect, and

the “hot” electron effect, as well as to the simpler meas-

urement of static conductivity. Since “ohmic” con-

tacts are not used, these measurements can be made on

materials for which contact fabrication techniques are

not well understood. Furthermore, the spherical geom-

etry should allow one to perform separate electrical

measurements along the various crystal axes of non-

isotropic solids by merely rotating a single specimen.

AET~N~IX

THE ELECTRIC MOMENT OF A SEMICONDUCTING

SPHERE IN A TIME-VARMNG ELECTRIC FIELD

Consider a sphere of radius R in a time-varying elec-

tric field. Assume that the sphere is sufficiently small

so that the external field in its neighborhood is quasi-

static, reducing to a uniform field in the Z direction ~Zo

at large distances. Since the magnitudes of the constitu-

tive parameters are to be unrestricted, no such assump-

tion will apply to the internal field. This problem, whose

magnetic analogue has been discussed by Casimir [9],

is thus a step beyond the quasi-static treatment.

In view of the solenoidal character of the complex dis-
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placement vector, it can be derived from a vector po-

ten tial ,~ whose divergence is zero. Thus

and

where

{

Co for R<r
.?(r) =

Co:r for r < R.
(30)

The vector potential satisfies

V22= o for R<r (31)

V’A– pi = o forr<R (32)

with

and the boundary conditions that A and the tangential

component of E are continuous at the surface of the

sphere.

Just as in the quasi-static treatment, the external field

is the superposition of the uniform field 2,0 and that of

a dipole in the z direction with moment $,.

Inside the sphere, we put formally

A= = – f(~r)y,

A, = + f(+r).r.

Substituting (34) into (32) leads to

which has the solution

{

(~r) cosh ($7) – sinh (~r)
j(+r) = a

)(yr), ‘

= afi(+?)

(33)

(34)

(35)

(36)

where a is a constant to be determined from boundary

conditions.

From the continuity of A at the surface one has

and from the continuity of the tangential component

of E,

Solving (37) and (38) for ~, yields the desired result,

where

(40)

fl(~R)

J
(~R) cosh (~R) – sinh (~R)

=–2—
}\(4R) cosh (4R) - { 1 + (7R)2} sinh (?T “ ’41)
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